DR. RAMMANOHAR LOHIA AVADH UNIVERSITY, AYODHYA

Structure of Syllabus for the Program: M.A./M.Sc., Subject: MATHEMATICS

Structure of Syl	Structure of Syllabus Developed by					
Name of BoS Convener/ BoS Member	Designation	Department	College/University			
Prof. Shiv Kumar Tiwari	Professor & Convener	Mathematics	K.S. Saket P.G. College, Ayodhya			
Prof. Arvind Kumar Misra	Professor & Expert	Mathematics	B.H.U., Varanasi			
Prof. Sanjay Kumar Pandey	Professor & Member	Mathematics	Shri L. B. S. Degree College, Gonda			
Prof. Jayash Nath Mishra	Professor & Member	Mathematics	G. S. P.G. College, Sultanpur			

Course Code		Course Title	Credits	T/P	Evaluation	
		Course The	Creuits	1/1	CIE	ЕТЕ
Α	В	С	D	Ε	F	G
SEMESTER-I (YEAR-I)						
B030701T	CORE	Advanced Abstract Algebra	5	Т	25	75
B030702T	CORE	Advanced Real Analysis	5	Т	25	75
B030703T	CORE	Topology	5	Т	25	75
B030704T	FIRST	Mathematical Modeling	5	Т	25	75
B030705T	ELECTIVE	Riemannian Geometry	5	Т	25	75
B030706T	(Select any one)	Fuzzy Sets	5	Т	25	75
B030707P	SECOND	Programming in Python-I	5	Р	50	50
B030708P	ELECTIVE (Select any one)	Computational Techniques using C	5	Р	50	50

SEMESTER- II (YEAR-I)						
B030801T	CORE	Analytical Dynamics	5	Т	25	75
B030802T	CORE	Theory of Differential Equation and Boundary Value Problems	5	Т	25	75
B030803T	CORE	Measure and Integration	5	Т	25	75
B030804T	THIRD	History of Mathematics	5	Т	25	75
B030805T	ELECTIVE	Indian Contribution in Mathematics	5	Т	25	75
B030806T	(Select any one)	Elementary Statistics	5	Т	25	75
B030807P	FOURTH	Programming in Python-II	5	Р	50	50
B030808P	ELECTIVE (Select any one)	Computer Aided Numerical Analysis	5	Р	50	50
	SI	EMESTER-III (YEAR-II)	•			
B030901T	CORE	Functional Analysis	5	Т	25	75
B030902T	CORE	Integral Equations	5	Т	25	75
B030903T	CORE	Machine Learning	5	Т	25	75
B030904T	FIFTH	General Relativity	5	Т	25	75
B030905T	ELECTIVE	Finsler Geometry	5	Т	25	75
B030906T	(Select any one)	Advanced Discrete Mathematics	5	Т	25	75
B030907P	SIXTH ELECTIVE	Introduction to SCILAB /MATLAB	5	Р	50	50
B030908P	(Select any one)	Introduction to LaTex	5	Р	50	50
		SEMESTER-IV(YEAR-II)		<u>I</u>		
B031001T	CORE	Advanced Operations Research	5	Т	25	75
B031002T	CORE	Fluid dynamics	5	Т	25	75
B031003T	SEVENTH	Special Functions	5	Т	25	75
B031004T	ELECTIVE	Differential Geometry of Manifolds	5	Т	25	75
B031005T	(Select any one)	Advanced Numerical Methods	5	Т	25	75
B031006P	RESEARCH PROJECT / DISSERTATION	Research Project / Dissertation	10	Р	50	50

M.A./M.Sc. I (SEMESTER-I), PAPER-I ADVANCED ABSTRACT ALGEBRA

Course C	ode: B030701T	Credit-5	Core paper			
		Max. Marks: 25+75				
	No. of Lectures-Tutorials (in	Course Title: A	dvanced Abstract Algebr	a		
	ours per week): 4+1=5					
Course ou						
	CO1: The students will be able to define Isotropic groups, solvable groups, cauchy's theorem for finite					
abelian g			1	1		
	e students will be able to defin ormal series, Jordan-Holder the	e 1 1				
canonical		oreni, modules, senui s ici	ana, joruan canonicai a	ind rational		
	e students will be able to defin	ne Field extensions, splitting	g or decomposition field.	normal and		
	field extension, perfect field.					
CO4: The	students are able to analyse Galo	is group, fundamental theore	m of Galois group.			
	e student is equipped with standard	e 1	e 1	im/her well		
	ursuing research in algebra.	I I				
Unit		Topics		No. of		
		L		Lectures		
Ι	Action of Group G on set, G-set,	stabilizers and faithful action	on of G, Isotopric groups,			
	solvable groups, cauchy's theorem	m for finite abelian group and	d finite groups.	20		
II	Maximal subgroups, simple grou	ps, composition series, norn	nal and subnormal series,			
	Jordan-Holder theorem, mo	dules, sub-modules, cyc	clic module, module	20		
	homomorphism and isomarphi	sm, Schur's lemma, Invar	riant subspaces, Jordan			
	canonical and rational canonical	forms.				
III	Field extensions, finite field e	xtensions, simple field ext	ensions, algebraic field	20		
	extension, splitting or decompo	osition field, normal and se	eparable field extension,			
	perfect field.					
IV	Galois group, fundamental the	e .	č 1 1	15		
	polynomial, Galois field, constru	ction of Galois field and its s	subtields.			
Suggestee	l Readings:					
	algebra: David S.Dummit, Richard M					
	algebra: I. N. Herstein–Wiley India P algebra: A. R. Vasishtha, A.k. Vasish					
J. WIOUEIII	aigeora. A. K. vasisiiulia, A.K. vasisi	una -Misima publications.				

.

.

M.A./M.Sc. I (SEMESTER-I), PAPER-II ADVANCED REAL ANALYSIS

C	ourse Code: B030702T	Credit-5	Core paper	
T (1)		Max. Marks: 25+75	le: Advanced Real Analy	sis
	No. of Lectures-Tutorials (in ours per week): 4+1=5	Course Int	ie. Auvanceu Keai Anaiy	515
Course ou	tcomes:			
	e students will be able to analy	yse Sequence and series of	functions of real numbe	rs, Uniforn
converger				
	e students will be able to anal	yse Riemann-Stieltjes integ	ration and their propertie	es, Relatio
	Riemann and R-S integrals. e students will be able to ana	lyss Eurotians of soveral y	variables Taylor's theore	m Vound
	and Schwarz's theorem.	ityse functions of several v	variables, rayiors theore	m, roung
	e students will be able to analys	e Functions of bounded varia	ation and their properties	. Absolutel
	s functions and their properties,			
variation.				
Unit		Topics		No. of
				Lectures
Ι	Sequence and series of function			
	Uniform convergence, Cauchy		-	20
	test for uniform convergence Uniform convergence and	d Uniform integration		
	differentiation.	d Official Integration	i convergence and	
Π	Riemann-Stieltjes integratio	n and their propertie	es, Riemann-Stieltjes	
	integration with respect to arb			20
	integrals, Integration by parts		S integrable functions,	
	Relation between Riemann and	d R-S integrals.		
III	Functions of several variables	, limit, continuity and diff	erentiability of several	20
	variables, Directional derivation			
	R ⁿ to R ^m . Taylor's theorem, Y			
IV	Functions of bounded variati	on and their properties	Absolutely continuous	15
1 V	functions and their propertie	1 1 ¹	•	15
	function of bounded variation.		solute continuity and	
Suggested	Readings:			
	R. Principles of Mathematical A	-	v-Hill, 2017.	
	e T. Analysis II. Hindustan Book			D 1 1 1
	S. C. and Arora, S. Mathematica	<i>l Analysis</i> . 2 nd edition reprin	t. New Age International	Publisher
2005. 4 Aposto	l, T. M. Mathematical Analysis.	nd edition Wesley Publishin	ng Co. 2002	
	•	First Course in Mathematic	0	ichina

5. Somasundram, D. and Chaudhary, B. A First Course in Mathematical Analysis. Narosa Publishing House, 1996.

6. Royden, H. L. Real Analysis, Macmillan Pub. Co., Inc. 4th edition, New York, 1993.

÷

M.A./M.Sc. I (SEMESTER-I), PAPER-III TOPOLOGY

Course C	Code: B030703T	Credit-5 Max. Marks: 25+75	Core paper	
	No. of Lectures-Tutorials (in nours per week): 4+1=5	Course	e Title: Topology	
neighbor CO2: Th countable CO3: Th propertie CO4: Th Tychono CO5: It	the students are able to analyse T hoods, closure, interior, exterior the students are able to analyse e spaces and separability. The students are able to understand s. The students are able to understand ff product topology. provides the students useful to ge of topology, it is rather import	r, derived and dense sets, be continuous functions and nd various concepts like: nd various concepts like: ools for studying local p	ases and sub-bases. Homeomorphism, first a T_0 , T_1 , T_2 , T_3 , T_4 spaces Compactness, Connector roperties of a space. W	and second and basic edness and Vithout the
Unit		Topics		No. of Lectures
Ι	Definition and example of Topological space, neighbor dense sets, bases and sub-base	hoods, closure, interior,		20
II	Continuous functions and H countable spaces, separability.		st) and second (2 nd)	20
III	T_0 , T_1 , T_2 , T_3 , T_4 spaces and the	eir basic properties.		20
IV	Connectedness and compactne	ess, definition and some ba	sic theorem.	15
1. K. D.Jos 2. J. L. Kel 3. James R	d Readings: shi: Introduction to general topology- lly : General Topology —Van Nostra Munkres: Topology —Prentice Hall I arma : Topology —Krishna publicatio	nd Reinhold company, Newyor India Private Ltd, New Delhi	k	

•

.

M.A./M.Sc. I (SEMESTER-I), PAPER-IV MATHEMATICAL MODELLING

		HEMATICAL MODELI					
	Course Code: B030704T	Credit-5 Max. Marks: 25+75	First Elective pap	er			
Tota	l No. of Lectures-Tutorials (in		athematical Modelling				
1000	hours per week): 4+1=5						
	outcomes:		- (h				
	CO1: The students will be able to convert a real-world problem into a mathematical model. CO2: The students will be able to analyse mathematical modelling: need, classification, modelling						
process,	process, Elementary mathematical models, Role of mathematics in problem solving and Single species						
1 1	on model. he students will be able to do mathen	natical modelling through or	dinary differential equations	,			
	rder and second order and Some app						
	R, SIRS models) and basic reproduct		ff				
	ne students will be able to do mathem nodels, Basic theory of linear different						
·	e students will be able to do mathem	A					
Unit		Topics		No. of Lectures			
Ι	Introduction to mathematical m	odelling: need, classification	tion, modelling process,				
	Elementary mathematical mod	els; Role of mathematic	cs in problem solving.	20			
	Single species population mode	l: The exponential model	and the logistic model,				
	Harvesting model and its critical	value.					
II	Modelling with ordinary differential equations: Overview of basic concepts in						
	ODE and stability of solutions: steady state and their local and global stability,						
	Linear and non-linear growth a	and decay models. Com	partment models. Some				
	applications in economics, ecolo	ogy, Modelling in epidem	niology (SIS, SIR, SIRS				
	models) and basic reproduction	number.					
III	Mathematical models through d	lifference equations, Som	ne simple models, Basic	20			
	theory of linear difference equ	ations with constant coefficients	efficients, Mathematical				
	modelling through difference ec	quations in economics and	d finance, Mathematical				
	modelling through difference eq	uations in population dyna	amics.				
IV	Mathematical modelling throug			15			
	rise to of partial differential equation and solution. Wave ex						
00	ed Readings:						
	P. Murthy, N. W. Page and E. Y. Rodin, Kapoor, Mathematical Modelling, Wiley		gamon Press.				
3. J.N. K	apur, Mathematical Models in Biology a	and Medicine, East-West Press.					
	Irlton, Ordinary Differential and Differen Brauer and Carlos Castillo-Chavez, Math		Biology and Epidemiology. Si	oringer.			
6. Frank	R. Giordano, William Price Fox, Mauri						
Van Wag	gner.						

.

7. Walter J. Meyer, Concept of Mathematical Modelling, McGraw-Hill.

8. Zafar Ahsan: Differential Equations and Their Applications, PHI learning Private Limited, New Delhi.

9. Steven H. Strogatz, Nonlinear dynamics and chaos, With Applications to Physics, Biology, Chemistry, and Engineering.

M.A./M.Sc. I (SEMESTER-I), PAPER-IV

RIEMANNIAN GEOMETRY Course Code: B030705T Credit-5 **First Elective paper** Max. Marks: 25+75 **COURSE TITLE: Riemannian Geometry** Total No. of Lectures-Tutorials (in hours per week): 4+1=5 Course outcomes: **CO1:** Students will be able to define Riemannian space, metric, Curvature of a curve, curvature of curve and Geodesic and its applications. CO2: Students will be able to define Congruences of curves, Ricci coefficient of rotation, Curvature of a congruence, Geodesic congruence, normal and irrotational congruence. **CO3**: Students will be able to define congruences and orthogonal ennuples and Ricci's coefficients of rotation, curvature of congruence. **CO4:** Students will be able to analyse Curvature tensor and Ricci tensor, Bianchi's Identity, Theorem of schur, Projective and Conformal transformation, Weyl's Curvature tensor and Conformal curvature tensor with their fundamental properties. **CO5**: Students will be able to analyse Hypersurfaces, Meusnier's theorem, Line of curvature.

005	Students will be able to analyse Hypersurfaces, Meusmer's theorem, Line of curvatur	C.
Unit	Topics	No. of Lectures
Ι	Riemannian space, metric, length of a curve, magnitude of vector, unit tangent	
	vector, Gradient of a scalar function, Angle between two curve, Curvature of a	20
	curve, Principal normal, First curvature and geodesic curvature, Equation of	
	geodesic and it's fundamental properties, Parallelism of vectors of constant and	
	variable magnitude, Definition of a subspace of a Riemannian space.	
II	Congruences of curves and orthogonalennuple, Ricci coefficient of rotation,	
	Curvature of a congruence, Geodesic congruence, normal and irrotational	20
	congruence.	
III	Curvature tensor and Ricci tensor, Covariant curvature tensor, Bianchi's Identity,	20
	Theorem of schur, Projective and Conformal transformation, Weyl's Curvature	
	tensor and Conformal curvature tensor with their fundamental properties.	
IV	Hypersurfaces : Definition of Hypersurface, Gauss formula for a Hypersurface,	15
	Curvature of a curve in a Hypersurface, Meusnier's theorem, Line of curvature.	
00	ted Readings:	
	Ersenhart : Riemannian Geometry – Princeton University Press.	
2. C.E. \	Veatherburn: An Introduction to Riemannian Geometry and the Tensor Calculus —Cambridge Univer	sity Press.

M.A./M.Sc. I (SEMESTER-I), PAPER-IV FUZZY SETS

	Course Code: B030706T	Credit-5	First Elective pa	per
		Max. Marks: 25+75		
Tot	tal No. of Lectures-Tutorials (in hours per week): 4+1=5	Course	e Title: Fuzzy Sets	
Course	e outcomes:			
CO1:	The students will be able to define	Fuzzy sets and representat	tions of Membership fund	ctions and
• 1	of Fuzzy sets.			
	The students will be able to define		rdinality, Fuzzy arithmet	ic
-	ions on intervals and Fuzzy equations			
	Students will be able to analyse Fu Students will be able to define Fuz	5	Euzzy lineer programmin	
proble		Ziness, Shannon Enuopy,	ruzzy inical programmin	lg
Unit		Topics		No. of
eme		1 opros		Lectures
Ι	Fuzzy sets and representations of Membership functions, types of Fuzzy sets, α -			
	cut, strong α -cut, level set, support core and height of Fuzzy sets, Normal, equal			20
	and equivalent Fuzzy set, contai	nments, union, intersectio	n of Fuzzy sets, degree	
	of sub-set hood, hamming distant	ce, convex fuzzy sets and a	algebra of convex fuzzy	
	sets.			
II	Fuzzy numbers, Fuzzy cardina	lity, Fuzzy arithmetic o	perations on intervals,	
	arithmetic operations on Fuzzy n	umbers, Fuzzy equations A	A+X=B, AX=B.	20
III	Fuzzy relations, union and inters	ection of Fuzzy relations,	Binary Fuzzy relations,	20
	domain, range, height, inverse	and matrix representat	tions of binary Fuzzy	
	relations, standard composition o	f Fuzzy relations, Fuzzy e	quivalence relations.	
IV	Fuzziness, Shannon Entropy, Fuz	zzy linear programming pr	oblems.	15
Sugges	ted Readings:			
1.Fuzzy	y set theory :Michael Smithson, Jay Verku	uilen— Sage Publications		
	y sets, Fuzzy logic and Fuzzy systems :Ge		Scientific, Singapore	
	y sets and Fuzzy logic : M Ganesh — PHI			
4.Fuzzy	y set theory :Shiv Raj Singh —Krishna pu	blications, Meerut		

M.A./M.Sc. I (SEMESTER-I), PAPER-V PROGRAMMING IN PYTHON-I

PROGR	AMMING IN PYTHO	N-1	
Course Code: B030707P	Max. Marks: 50 + 50	Second Elective Paper	
Total No. of Lectures-Practicals (in hours per week) : 4 + 2	Course Title: PROGRAMMING IN PYTHON-I		
Course outcomes:			
CO1: The students will be able to describe	the basic principles of Py	ython programming language.	
CO2: The students will be able to implement	1 1 1		
CO3: The students will be able to making u	5 1		
CO4: The students will be able to experienc	e with an interpreted lang	guage.	
Basics of Python programming Introduction to Python, Python Identifiers, Lists and Tuples, Dictionary & Sets, Inpu Control Flow statements, Functions, Modu Working with files	t-Output, Conditional St	atements and Expressions, Loops	
 Getting started, Anaconda Installatio Calculate the distance between two Write a program to calculate averag Write a program to calculate factoria 	points in three dimension e of two numbers and pri	18	

- 6 Write a program greatest number from three numbers.
- 7 Write a program to print the reverse of a number.
- 8 Write a program to classify a given number as prime or composite
- 9 Write a program that computes permutations P(n,r) and combinations C(n,r)
- 10 Write a program that computes displays all leap years from 1900-2101
- 11 Write a program to print Fibonacci series up to a given number
- 12 Write a program to convert binary number to decimal number and vice versa
- 13 Opening, closing, editing, deleting and creating files in python
- 14 Create a simple function and call it from the main program
- 15 Loops in python: examples

Suggested readings:

- 1 S. Gowrishankar and A. Veena A, Introduction to Python Programming, CRC Press (2019).
- 2 Adam Stewart -Python Programming (2016).
- **3** Kenneth A. Lambert, Fundamentals of Python First Programs with Mindtap, Cengage Learning India (2011).

M.A./M.Sc. I (SEMESTER-I), PAPER- V

		g C
Course Code: B030708P	Credit-5	Second Elective Paper
	Max. Marks: 50 + 50	
Total No. of Lectures-Practicals (in hours	Course Title: Compu	tational Techniques using C
per week): 4 + 2		
-		
Course outcomes: CO1: The students will be able to learn a CO2: The students will be able to define on problems subject domain. CO3: The students will be able to have a CO4: The students will be able to able to decision making, statements/loops. CO5: The students will be able to able to Basics of C programming Overview of C: History and importance Programme, Constants, Variables, and Day Increment and Decrement, Conditional, Bin expressions. Input and output operators. Dec simple if statement, the if-else statement, statement, The Goto statement. Decision M for statement. Jump in Loop. Arrays: C Two–Dimensional Arrays. Initializing of Dynamic Arrays, Character Arrays and Str multi-function program. Elements of us Functions Deceleration. Category of function Practical: Programming in C (with ANSI 1. To print the prime numbers b 2. Write a program to add, subt 3. To find the average of betwe 4. Write a program to check a m 5. Write a program to display ta 6. To find the roots of a cubic e 7. To sum and difference of any column sum of a given matrix 8. To find inverse of a given 33 9. Write a program to find the t 10. To sort all the elements of a 11. Program to accept a matrix a skew-symmetric or not.	e and manage various type ability to handle possible error various types of functions a <u>o apply in various fields of 1</u> of C. Sample Programs. Pa- ta Type. Operators: Arithmet twise, Special. Expressions: A ecision Making and Branching , Nesting of if-else statemen Making and Looping: The white One and Two- Dimensional One and Two- Dimensional one and Two- Dimensional crings. User-defined Functions features) between 1 and 100. ract, multiply and divide co- ten n and 12n where n is an number is Armstrong or not able from 11 to 20. equation. y two matrices and hence fin ix x3 matrices. ranspose, trace and norm of 4x4 matrix.	of data and data- structures based rors during program execution. and able to apply various types of <u>Mathematics</u> . rogramming Style. Executing a 'C' ic, Relational, Logical, Assignment, Arithmetic expressions, evaluation of g: Decision making with if statement, ts, The else if Ladder, The Switch ile statement, The do statement, The Arrays. Deceleration of One and Arrays. Multi-dimensional Arrays, to no f functions. Functions Call, ommon fractions. integer. ? nd the row sum and f a matrix.

1. Balagurusamy: Programming in ANSI C, MacGraw Hill Education (India) Pvt. Ltd., New Delhi.

2. Kernigham and Ritche: C Programming Language, Pearson Education India,

÷

M.A./M.Sc. I (SEMESTER-II), PAPER-I Analytical Dynamics

		Analytical Dynamics		
Co	ourse Code: B030801T	Credit-5	Core paper	
		Max. Marks: 25+75		
Total N	o. of Lectures-Tutorials (in	Course Title: Analytica	l Dynamics	
ho	ours per week): 4+1=5			
Course of	utcomes:			
CO1: The	e students will be able to class	ify dynamical systems, an	nd define generalized c	oordinates,
Classificat	ion of Dynamical System and D'A	Alembert's Principle, Lagran	ge's equations.	
CO2: The	e students will be able to define	e Hamilton's canonical ec	uations, Hamilton's pri	nciple and
1 I	of least action.			
	students will be able to define		e	•
-	for the motion of a rigid body a students will be able to	•		-
	nation, Jacobi Identity, Hamilto			Callollical
Unit		Topics		No. of
Cint		Topics		Lectures
Ι	Introduction of Analytical E	Dynamics. Generalized co	ordinates. Degree of	20
_	Freedom, Classification of	•	•	
	Conservative System, general	•		
	equations		rimerpre, Lugrunge s	
II	Hamilton's canonical equatio	ons, Hamilton's principle	and principle of least	
	action, Conservation of M			20
	Hamiltonian Function and tota	-	•	20
III	Two-dimensional motion of r	igid bodies, Euler's dynar	nical equations for the	
	motion of a rigid body abo			20
	examples.	-		
IV	Lagrange Bracket, Poisson	Bracket, Canonical Tr	cansformation, Jacobi	15
	Identity, Hamilton Jacobi The			
Suggested	Readings:			
1 Cl	assical Mechanics : Goldestein, I	H, Pearson Education, 2011		
	assical Mechanics : Rana and Jog,		17	
3 Cl	assical Mechanics : J.C. Upadhyay	ya, Himalaya publication, 20	14	
4 A1	nalytical Dynamics: A New Appro	ach, Udwadia and Robert, C	ambridge University Press	s, 2007

M.A./M.Sc. I (SEMESTER-II), PAPER-II

Theory of Differential Equation and Boundary Value Problem

С	ourse Code: B030802T	Credit-5	Core paper	
		Max. Marks: 25+75		
	No. of Lectures-Tutorials (in ours per week): 4+1=5	Course Title: Theory of I Va	Differential Equation and lue Problem	Boundary
Course ou	tcomes:			
CO1: The	students will be able to analyse La	aplace's Equation, Harmonic	functions, Heat and Wave	e equations
	undamental solutions.			
	e students will be able to analyse	· · · ·	theorem, initial value pro	oblems and
•	heorem, Peano's existence theore			
	students will be able to analyse (ons of Sturm-Liouville boui	ndary value
•	Green's function, Poisson represent		· (· · · · · · · · · · · · · · · · · ·	
	e students will be able to analyse		sform to solve differentia	l equations
	er transforms to boundary value P			
Unit		Topics		No. of Lectures
Ι	Method of separation of variab	oles for Laplace, Fundamen	tal solution of Laplace's	
	Equation, Harmonic functions	and properties, The maxi	mum principle, Energy	20
	methods, Heat and Wave eq			
	equation with initial values, Fund			
Π	Existence and uniqueness theo		-	
	picardes theorem, convergence		alue problems, Peano's	20
TTT	existence theorem (statement of		n velve verblere river	20
III	Ordinary Differential Equations			20
	values and Eigen functions, Or function.	thogonality theorem, Expa	ision theorem, Green's	
IV	Application of Laplace transfor	rm to solve differential ea	wations Application of	15
1 1	Fourier transforms to boundary		Juations, Application of	15
Constant	· · · · ·			
00	l Readings: mons, Differential Equations with App	1 1		

2. Coddington, E. A. and Levinson, N. (1955) Theory of Ordinary Differential equations, TMHEducation.

3. M. D. Raisinghania, Advanced Differential Equations, S. Chand, 2016.

4. D.P. Choudhary and H. I. Freedman: A Course in Ordinary Differential Equations, Narosa Publishing House, New Delhi, 2002.

5. I.N. Sneddon, Elements of Partial Differential Equations, McGraw-Hill, 1988.

6. Robert C Mcowen, Partial Differential Equations: Methods and Applications, Pearson Education Inc. 2003.

M.A./M.Sc. I (SEMESTER-II), PAPER-III

	IVILA	ASURE AND INTEGRATI	UN	
C	ourse Code: B030803T	Credit-5	Core paper	
		Max. Marks: 25+75		
Total I	No. of Lectures-Tutorials (in	Course Title: 1	Measure and Integration	
h	ours per week): 4+1=5			
Course ou				
	tudents will be efficient to kn	•	e	
	only meter measure gives the	measurability of a set.	Student will easily clas	ssify some
	le and non -measurable sets.			
	Students will enable themsel			functions
	lity and measurability of a set is	•		1 T 1
	udents will be defined Lebesgu	6	e	i Lebesgue
U ,	Lebesgue integral of bounded m		1 1	II.l.d.a.
	he students will be able to analy	1		i, Holder
	y, Minikowski inequality, Schw		y.	NT 0
Unit		Topics		No. of
				Lectures
Ι	Measurable sets, outer and			
	intersection of a Measurable s	e		20
11	zero. Boral sets, measure of co			
II	Measurable functions, algebra			
	function, measurability of a co			20
III	Lebesgue integral, Relation be	e	6 6 .	20
	criterion theorem for Lebes			
	measurable function and it's functions.	s properties, Lebesgue i	ntegral of unbounded	
IV		initions and theorem,	Holder's inequality,	15
1 V	Minikowski inequality, Schwa		1 5,	15
C	· · ·	and sense inequality	•	
00	Readings:	a 1 111 111 -		
	ure theory : Krishna B.Athreya,			ncy
	ure theory and Integration : G. ure theory and Integratism : A B			hlichen
$\gamma - Meas$	ure incorv and integratism : A k	s malik NU Malik NK (unia – willy Eastern Pil	nusner

÷

M.A./M.Sc. I (SEMESTER-II), PAPER-IV

	Course Code:B030804T	Credit-5	Third Elective Pa	per
		Max. Marks: 25+75		
Total No	o. of Lectures-Tutorials (in hours per week): 4+1=5	Course Title: HIS	TORY OF MATHEMATICS	
	utcomes: e students will be able to know that	how the concepts have been	n developed in Mathemat	ics
Unit		Topics		No. of Lectures
I	Ancient Mathematics: The Bal Romans, The Maya, The Chin			20
II	Mathematics in Europe during	the middle age.		20
III	Mathematics during the sixtee twentieth centuries.	nth, seventeenth, eighteentl	h, nineteenth, and	20
IV	There naissance Vieta and D Hardy, and Ramanujan	bescartes to Newton, Euler	r, Lagrange, Laplace,	15
Suggeste	ed Readings:			
	on: A History of Mathematics, 1894. vell: Mathematics and its History, S 2005.		4th Indian	

HISTORY OF MATHEMATICS

M.A./M.Sc. I (SEMESTER-II), PAPER-IV

	India	n Contribution in Mathema	tics	
	Course Code:B030805T	Credit-5	Third Elective Pa	per
		Max. Marks: 25+75		
Total No	o. of Lectures-Tutorials (in hours per week): 4+1=5	Course Title: Indian	Contribution in Mather	matics
Course of CO1: The	u tcomes: students will be able to know Vedi	ic period and some Indian co	ontribution in Mathematics	5.
Unit		Topics		No. of Lectures
I	Vedic period: Yajurveda s used, mantra in asvamedha, se of virtual geometric constructi of sacrificial five altars in s theorem and square root of tw for use of Boolean logic and N	olution of partial fraction ons in satpatha Brahmma sulbha sutra, verbal expr vo in Baudhayana Sulba S	in purush sukta, value Rules for construction ession of Pythagorean	20
II	Post Vedic Period: Chhan combination; Pascal's triangle numbers and combinatorial id Mahavira's classified number used beejganita samikaran a including factorials. Astronom	e, bionomial coefficients, b dentity in work of Katya c as enumerable, innume and shunya (zero) with	basic ideas of fibonacci yana. Jain philosopher rable and infinite. He	20
111	Classical Period: Aryabha includes Place value system days in a year. Bhramhagupta of zero. Works of Varahamihi of sangamgrama and nilaka shripati mishra.	tiya and Arya- Siddhanta and position of a planet who introduced concept ira, Bhaskara l, Bhaskara	along with number of and computing method ll, Mahavira, Madhava	20
IV	Modern Period: Contribu Ramanujan, Mahalanobis, C Nath Bose, Narendra Karmaka	R Rao, Kaprekar, Harish	Chandra, Satyendra	15
 Gerard Hindustar Gaurav Jayant 	d Readings: I G. Emch, M.D. Srinivas, R. Sridha n Book Agency. 7 Tekriwal (2021), The Great Indian V Narlikar (2003), The Scientific Books Limited.	Mathematics, Penguin Rand	lom house India Private Lir	nited.

.

Indian Contribution in Mathematics

M.A./M.Sc. I (SEMESTER-II), PAPER-IV

Elementary Statistics

Course Code: B0308067 Credit-5 Max. Marks: 25+75 Third Elective paper Total No. of Lectures-Tutorials (in hours per weck): 4+1=5 Course Title: Elementary Statistics Statistics Course outcomes: COL Statistics Statistics Statistics CO2: Students will be able to study various measures of dispersion and standard deviation. CO3: Students will be able to analyze and solve various concepts related to probability and probability distributions. No. of Lectures CO4: Students will be able to learn and use concepts of Statistics, Population versus, hypothesis testing, linear regression No. of Lectures Unit Topics No. of Lectures No. of Lectures I Introduction to Statistics, Branches of Statistics, Population versus Sample, and Sampling Techniques, Frequency Distributions, Relative Frequency. 15 Basic Terminology, Types of Variables, Summation Notation, Sources of Data, and Sampling Techniques, Frequency Distributions, Relative Frequency. 15 III Pie Charts, Frequency Histogram, and Cumulative Frequency. 15 IUngrouped Data), Measures of Variability: Range, variance and standard deviation. 16 IIII Random variables, Discrete and continuous Random Variables. Mean and deviation. 20 IUngrouped Data), M			Elementary Statistics		
Total No. of Lectures-Tutorials (in hours per week): 4+1=5 Course Title: Elementary Statistics Course outcomes: COURSE Title: Elementary Statistics CO1: Students will learn basic concepts of statistics used in various disciplines CO2: Students will learn basic concepts of statistics used in various disciplines CO3: Students will be able to study various measures of dispersion like range, mean deviation, quartil deviation and standard deviation. CO3: Students will be able to analyze and solve various concepts related to probability and probabilit distributions. CO4: Students will be able to learn and use concepts confidence intervals, hypothesis testing, linear regression No. of Lectures Unit Topics No. of Lectures I Introduction to Statistics, Branches of Statistics, Population versus Sample, and Sampling Techniques, Frequency Distributions, Relative Frequency. 15 Basic Terminology, Types of Variables, Summation Notation, Sources of Data, and Sampling Techniques, Frequency Distributions, Relative Frequency. 15 II Pie Charts, Frequency Histogram, and Cumulative Frequency. Measures of Center: Mean, Median and Mode. Intro to Measures of Dispersion (Ungrouped Data), Measures of Variability: Range, variance and standard deviation. 15 III Random variables, Discrete and continuous Random Variables. Mean and Standard Deviation, Probability, probability distributions, Intro to Normal Distribution, Applications of Normal Distribution sampling distribution, binomia	Co	ourse Code: B030806T	Credit-5	Third Elective p	aper
hours per week): 4+1=5 Course outcomes: C01: Students will learn basic concepts of statistics used in various disciplines C02: Students will be able to study various measures of dispersion like range, mean deviation, quartil deviation and standard deviation. C03: Students will be able to analyze and solve various concepts related to probability and probabilit distributions. C04: Students will be able to learn and use concepts confidence intervals, hypothesis testing, linea regression Unit Topics No. of Lectures I Introduction to Statistics, Branches of Statistics, Population versus Sample, Basic Terminology, Types of Variables, Summation Notation, Sources of Data, and Sampling Techniques, Frequency Distributions, Relative Frequency. 15 II Pie Charts, Frequency Histogram, and Cumulative Frequency. Measures of Center: Mean, Median and Mode. Intro to Measures of Dispersion (Ungrouped Data), Measures of Variability: Range, variance and standard deviation. 15 III Random variables, Discrete and continuous Random Variables. Mean and Standard Deviation, Probability, probability distributions, Intro to Normal Distribution, Applications of Normal Distribution sampling distributions, binomial distribution, the student's t distribution, the Chi-square distribution 20 III Estimation using confidence intervals, hypothesis testing, linear regression, 225			Max. Marks: 25+75		
Course outcomes: Course outcomes: CO1: Students will learn basic concepts of statistics used in various disciplines CO2: Students will be able to study various measures of dispersion like range, mean deviation, quartil deviation and standard deviation. CO3: Students will be able to study various measures of dispersion like range, mean deviation, quartil deviation and standard deviation. CO3: Students will be able to analyze and solve various concepts related to probability and probabilit distributions. CO4: Students will be able to learn and use concepts confidence intervals, hypothesis testing, linea regression Unit Topics No. of Lectures I Introduction to Statistics, Branches of Statistics, Population versus Sample, Basic Terminology, Types of Variables, Summation Notation, Sources of Data, and Sampling Techniques, Frequency Distributions, Relative Frequency. 15 II Pie Charts, Frequency Histogram, and Cumulative Frequency. Measures of Center: Mean, Median and Mode. Intro to Measures of Dispersion (Ungrouped Data), Measures of Variability: Range, variance and standard deviation. 15 III Random variables, Discrete and continuous Random Variables. Mean and Standard Deviation, Probability, probability distributions, Intro to Normal Distribution, Applications of Normal Distribution sampling distributions, binomial distribution, the student'st distribution, the Chi-square distr	Total N	o. of Lectures-Tutorials (in	Course Title: Elementa	ry Statistics	
CO1: Students will learn basic concepts of statistics used in various disciplines CO2: Students will be able to study various measures of dispersion like range, mean deviation, quartil deviation and standard deviation. CO3: Students will be able to analyze and solve various concepts related to probability and probabilit distributions. CO4: Students will be able to learn and use concepts confidence intervals, hypothesis testing, linear regression No. of Unit Topics No. of I Introduction to Statistics, Branches of Statistics, Population versus Sample, and Sampling Techniques, Frequency Distributions, Relative Frequency. II Pie Charts, Frequency Histogram, and Cumulative Frequency. Measures of Center: Mean, Median and Mode. Intro to Measures of Dispersion (Ungrouped Data), Measures of Variability: Range, variance and standard deviation. 20 III Random variables, Discrete and continuous Random Variables. Mean and Standard Deviation, Probability, probability distributions, Intro to Normal Distribution, Applications of Normal Distribution sampling distributions, binomial distribution, the student's t distribution, the Chi-square distribution 20 III Random variables, Discrete and continuous Random Variables. Mean and Standard Deviation, Probability, probability distributions, Intro to Normal Distribution, Applications of Normal Di	ho	ours per week): 4+1=5			
CO2: Students will be able to study various measures of dispersion like range, mean deviation, quartil deviation and standard deviation. CO3: Students will be able to analyze and solve various concepts related to probability and probabilit distributions. CO4: Students will be able to learn and use concepts confidence intervals, hypothesis testing, linear regression Unit Topics No. of Lectures I Introduction to Statistics, Branches of Statistics, Population versus Sample, Basic Terminology, Types of Variables, Summation Notation, Sources of Data, and Sampling Techniques, Frequency Distributions, Relative Frequency. 15 II Pie Charts, Frequency Histogram, and Cumulative Frequency. Measures of Center: Mean, Median and Mode. Intro to Measures of Dispersion (Ungrouped Data), Measures of Variability: Range, variance and standard deviation. 15 III Random variables, Discrete and continuous Random Variables. Mean and Standard Deviation, Probability, probability distributions, Intro to Normal Distribution, Applications of Normal Distribution sampling distribution, binomial distribution, the student's t distribution, the Chi-square distribution 20 IV Estimation using confidence intervals, hypothesis testing, linear regression, 25 25	Course ou	utcomes:	I		
deviation and standard deviation. CO3: Students will be able to analyze and solve various concepts related to probability and probabilit distributions. CO4: Students will be able to learn and use concepts confidence intervals, hypothesis testing, linear regression Unit Topics No. of Lectures I Introduction to Statistics, Branches of Statistics, Population versus Sample, Basic Terminology, Types of Variables, Summation Notation, Sources of Data, and Sampling Techniques, Frequency Distributions, Relative Frequency. 15 II Pie Charts, Frequency Histogram, and Cumulative Frequency. Measures of Center: Mean, Median and Mode. Intro to Measures of Dispersion (Ungrouped Data), Measures of Variability: Range, variance and standard deviation. 15 III Random variables, Discrete and continuous Random Variables. Mean and Standard Deviation, Probability, probability distributions, Intro to Normal Distribution, Applications of Normal Distribution sampling distributions, binomial distribution, the student's t distribution, the Chi-square distribution 20 IV Estimation using confidence intervals, hypothesis testing, linear regression, correlation 25		•			
CO3: Students will be able to analyze and solve various concepts related to probability and probability distributions.CO4: Students will be able to learn and use concepts confidence intervals, hypothesis testing, liner regressionNo. of LecturesUnitTopicsNo. of LecturesIIntroduction to Statistics, Branches of Statistics, Population versus Sample, and Sampling Techniques, Frequency Distributions, Relative Frequency.15IIPie Charts, Frequency Histogram, and Cumulative Frequency. Measures of (Ungrouped Data), Measures of Variability: Range, variance and standard 			ous measures of dispersion	like range, mean deviati	on, quartile
distributions. CO4: Students will be able to learn and use concepts confidence intervals, hypothesis testing, linear regression Unit Topics No. of Lectures I Introduction to Statistics, Branches of Statistics, Population versus Sample, Basic Terminology, Types of Variables, Summation Notation, Sources of Data, and Sampling Techniques, Frequency Distributions, Relative Frequency. 15 II Pie Charts, Frequency Histogram, and Cumulative Frequency. Measures of Center: Mean, Median and Mode. Intro to Measures of Dispersion (Ungrouped Data), Measures of Variability: Range, variance and standard deviation. 15 III Random variables, Discrete and continuous Random Variables. Mean and Standard Deviation, Probability, probability distributions, Intro to Normal Distribution, Applications of Normal Distribution sampling distribution, binomial distribution, the student's t distribution, the Chi-square distribution 20 IV Estimation using confidence intervals, hypothesis testing, linear regression, correlation 25			solve various concents rel	ated to probability and	probability
CO4: Students will be able to learn and use concepts confidence intervals, hypothesis testing, linear regression Unit Topics No. of Lectures I Introduction to Statistics, Branches of Statistics, Population versus Sample, and Sampling Techniques, Frequency Distributions, Relative Frequency. 15 II Pie Charts, Frequency Histogram, and Cumulative Frequency. Measures of Center: Mean, Median and Mode. Intro to Measures of Dispersion (Ungrouped Data), Measures of Variability: Range, variance and standard deviation. 15 III Random variables, Discrete and continuous Random Variables. Mean and Standard Deviation, Probability, probability distributions, Intro to Normal Distribution, Applications of Normal Distribution sampling distributions, binomial distribution, the student's t distribution, the Chi-square distribution 20 IV Estimation using confidence intervals, hypothesis testing, linear regression, correlation 25			solve various concepts ter	aled to probability and	probability
regressionNo. of LecturesUnitTopicsNo. of LecturesIIntroduction to Statistics, Branches of Statistics, Population versus Sample, and Sampling Techniques, Frequency Distributions, Relative Frequency.15IIPie Charts, Frequency Histogram, and Cumulative Frequency. Center: Mean, Median and Mode. Intro to Measures of Dispersion (Ungrouped Data), Measures of Variability: Range, variance and standard deviation.15IIIRandom variables, Discrete and continuous Random Variables. Mean and Standard Deviation, Probability, probability distributions, Intro to Normal Distribution, Applications of Normal Distribution sampling distribution, binomial distribution, the student's t distribution, the Chi-square distribution20IVEstimation using confidence intervals, hypothesis testing, linear regression, correlation25			l use concepts confidence	intervals, hypothesis tes	sting, linear
ILecturesIIntroduction to Statistics, Branches of Statistics, Population versus Sample, Basic Terminology, Types of Variables, Summation Notation, Sources of Data, and Sampling Techniques, Frequency Distributions, Relative Frequency.15IIPie Charts, Frequency Histogram, and Cumulative Frequency. Measures of Center: Mean, Median and Mode. Intro to Measures of Dispersion (Ungrouped Data), Measures of Variability: Range, variance and standard deviation.15IIIRandom variables, Discrete and continuous Random Variables. Mean and Standard Deviation, Probability, probability distributions, Intro to Normal Distribution, Applications of Normal Distribution sampling distributions, binomial distribution, the student's t distribution, the Chi-square distribution20IVEstimation using confidence intervals, hypothesis testing, linear regression, correlation25			•	••	
IIntroduction to Statistics, Branches of Statistics, Population versus Sample, Basic Terminology, Types of Variables, Summation Notation, Sources of Data, and Sampling Techniques, Frequency Distributions, Relative Frequency.15IIPie Charts, Frequency Histogram, and Cumulative Frequency. Measures of Center: Mean, Median and Mode. Intro to Measures of Dispersion (Ungrouped Data), Measures of Variability: Range, variance and standard deviation.15IIIRandom variables, Discrete and continuous Random Variables. Mean and Standard Deviation, Probability, probability distributions, Intro to Normal Distribution, Applications of Normal Distribution sampling distributions, binomial distribution, the student's t distribution, the Chi-square distribution20IVEstimation using confidence intervals, hypothesis testing, linear regression, correlation25	Unit		Topics		No. of
Introduction to blattering branches of obtained of					Lectures
and Sampling Techniques, Frequency Distributions, Relative Frequency.IIPie Charts, Frequency Histogram, and Cumulative Frequency. Measures of Center: Mean, Median and Mode. Intro to Measures of Dispersion (Ungrouped Data), Measures of Variability: Range, variance and standard deviation.15IIIRandom variables, Discrete and continuous Random Variables. Mean and Standard Deviation, Probability, probability distributions, Intro to Normal Distribution, Applications of Normal Distribution sampling distributions, binomial distribution, the student's t distribution, the Chi-square distribution20IVEstimation using confidence intervals, hypothesis testing, linear regression, correlation25	Ι	Introduction to Statistics, Bra	anches of Statistics, Popu	llation versus Sample,	15
IIPie Charts, Frequency Histogram, and Cumulative Frequency. Measures of Center: Mean, Median and Mode. Intro to Measures of Dispersion (Ungrouped Data), Measures of Variability: Range, variance and standard deviation.15IIIRandom variables, Discrete and continuous Random Variables. Mean and Standard Deviation, Probability, probability distributions, Intro to Normal Distribution, Applications of Normal Distribution sampling distributions, binomial distribution, the student's t distribution, the Chi-square distribution20IVEstimation using confidence intervals, hypothesis testing, linear regression, correlation25		Basic Terminology, Types of V	Variables, Summation Not	ation, Sources of Data,	
Center: Mean, Median and Mode. Intro to Measures of Dispersion15(Ungrouped Data), Measures of Variability: Range, variance and standard deviation.15IIIRandom variables, Discrete and continuous Random Variables. Mean and Standard Deviation, Probability, probability distributions, Intro to Normal Distribution, Applications of Normal Distribution sampling distributions, binomial distribution, the student's t distribution, the Chi-square distribution20IVEstimation using confidence intervals, hypothesis testing, linear regression, correlation25		and Sampling Techniques, Fre	equency Distributions, Rela	ative Frequency.	
Center: Mean, Mean and Mode. Intro to Measures of Dispersion(Ungrouped Data), Measures of Variability: Range, variance and standard deviation.IIIRandom variables, Discrete and continuous Random Variables. Mean and Standard Deviation, Probability, probability distributions, Intro to Normal Distribution, Applications of Normal Distribution sampling distributions, binomial distribution, the student's t distribution, the Chi-square distributionIVEstimation using confidence intervals, hypothesis testing, linear regression, correlation	II	Pie Charts, Frequency Histog	gram, and Cumulative Fre	equency. Measures of	
deviation.IIIRandom variables, Discrete and continuous Random Variables. Mean and Standard Deviation, Probability, probability distributions, Intro to Normal Distribution, Applications of Normal Distribution sampling distributions, binomial distribution, the student's t distribution, the Chi-square distribution20IVEstimation using confidence intervals, hypothesis testing, linear regression, correlation25		Center: Mean, Median an	d Mode. Intro to Mea	asures of Dispersion	15
IIIRandom variables, Discrete and continuous Random Variables. Mean and Standard Deviation, Probability, probability distributions, Intro to Normal Distribution, Applications of Normal Distribution sampling distributions, binomial distribution, the student's t distribution, the Chi-square distribution20IVEstimation using confidence intervals, hypothesis testing, linear regression, correlation25		(Ungrouped Data), Measure	s of Variability: Range, v	ariance and standard	
Standard Deviation, Probability, probability distributions, Intro to Normal 20 Distribution, Applications of Normal Distribution sampling distributions, binomial distribution, the student's t distribution, the Chi-square distribution 20 IV Estimation using confidence intervals, hypothesis testing, linear regression, correlation 25		deviation.			
Initial Deviation, Probability, probability distributions, Intro to Normal Distribution, Applications of Normal Distribution sampling distributions, binomial distribution, the student's t distribution, the Chi-square distribution IV Estimation using confidence intervals, hypothesis testing, linear regression, correlation 25	III	Random variables, Discrete a	and continuous Random	Variables. Mean and	
binomial distribution, the student's t distribution, the Chi-square distribution IV Estimation using confidence intervals, hypothesis testing, linear regression, correlation 25		Standard Deviation, Proba	bility, probability distributi	ons, Intro to Normal	20
IV Estimation using confidence intervals, hypothesis testing, linear regression, 25 correlation		Distribution, Applications c	of Normal Distribution	sampling distributions,	
correlation		binomial distribution, the stude	nt's t distribution, the Chi-sq	uare distribution	
	IV	Estimation using confidence	intervals, hypothesis test	ing, linear regression,	25
Suggested Readings:		correlation			
	Suggested	I Readings:			

- 1. Gupta, S.C. and Kapoor, V.K. (2007): Fundamentals of Mathematical Statistics, 11th Edn., (Reprint), Sultan Chand and Sons.
- 2. Miller, Irwin and Miller, Marylees (2006): John E. Freund's Mathematical Statistics with Applications, (7th Edn.), Pearson Education, Asia.
- 3. Spiegel and Stephens: Schaum's outlines Statistics, McGraw Hill Education

M.A./M.Sc. I (SEMESTER-II), PAPER-V PROGRAMMING IN PYTHON-II

Course Code: B030807P	Max. Marks: 50 + 50	Fourth Elective Paper
Total No. of Lectures-Practicals (in hours	Course Title: PROG	RAMMING IN PYTHON-II
per week) : 4 + 2		
Course outcomes:		
CO1: The students will be able to analyze	the data by plotting Bar cha	art/Pie chart/Histogram using Python
programming.		
CO2 : The students will be able to solve sin		
CO3: The students will be able to solve o	rdinary and partial differ	rential equations by using Python
Programming.		
CO4: The students will be able to find ro	ots of equations by usin	g different methods with Python
programming.	1 V	•
Use of Matplotlib for plotting and data repre-	esentation. Introduction to	numpy, scipy, sympy, using these
libraries for Fourier series and Fourier transfor		
□ Practicals:	,	
Practicals:		
I Data Visualization - I		
1. Scatter plots		
2. Bar charts		
3. Histograms		
4. Pie Charts		
II Data Visualization - II		
5. Interactive plots -1 : modifying display.		
6. Interactive plots -2 : editing data and plots.		
7. How to make a simple animation in python		
III Numpy		
8. Array Arithmatic		
9. Matrix Arithmatic		
10. Numerical Methods through numpy		
IV Scipy		
11. Regression		
12. Optimization		
13. Root-Finding		
Suggested readings		
Suggested readings:		
1 S. Gowrishankar and A. Veena A, Intr		nming, CRC Press (2019).
2 Adam Stewart -Python Programming (
3 Kenneth A. Lambert, Fundamentals of (2011)	Python First Programs wi	th Mindtap, Cengage Learning India

4 John V. Guttag, Introduction to Computation and Programming using Python, MIT Press (2021)

M.A./M.Sc. I (SEMESTER-II), PAPER-V

Comp	uter Aided Numerical Ana	lysis
Course Code: B030808P	Credit-5	Fourth Elective Paper
	Max. Marks: 50 + 50	
Total No. of Lectures-Practicals (in hours	Course Title: Compu	ter Aided Numerical Analysis
per week): 4 + 2		
Course outcomes:		
CO1: The students will be able to fin	nd roots of equations by	using different methods with C
programming.		
CO2: The students will be able to solve	e simultaneous equations b	by using different methods with C
programming. CO3: The students will be able to solv	a differential equations h	y using different methods with C
programming.	e unierentiai equations b	y using unrerent methods with C
programming.		
Finite differences, Operators, Interpolation,	Roots of a polynomial, Bised	ction Method, Newton-Raphson
Method, Regula Falsi Method, Simultaneous		_
Seidal Method, L U Decomposition method,	Numerical Quadrature, Sim	pson's rules, Trapezoidal Rule,
Solving a ordinary differential equation usin	g Euler's Method, . Runge-K	Lutta Method. Eigen value problem,
Practicals: Write Code for following		
1. Find roots of a polynomial using Bisection		
2. Find roots of a polynomial using Newton-	_	
3. Find roots of a polynomial using Regula-I		
4. Find the polynomial from a given data set		on formula.
5. Solve a system of linear equations using C		
6. Solve a system of linear equations using l	-	
7. Use Gauss-Seidal Method for system of li	•	
8. Integrate a function using Simpson's 1/3rd		
9. Integrate a function using Trapezoidal Ru		
10. Find solution of ordinary differential equ	-	-
11. Solve a systems of ordinary differential e		iumerical methods.
12. Find eigenvalue and corresponding eiger	ivectors of a given matrix.	
Suggested Readings:		
1. M. K. Jain, S. R. K. Ivengar – R. K. Jain, Nur	norical Mathada far Calastifi	e and Engineering Computation New

1. M. K. Jain, S. R. K. Iyengar – R. K. Jain, Numerical Methods for Scientific and Engineering Computation, New Age International, 6th Edition 2012.

2. A. Ralston and P. Rabinowitz – A First Course in Numerical Analysis, 2nd Edition, McGraw - Hill, New York, 1978

3. K.E. Atkinson, An Introduction to Numerical Analysis, John Wiley and Sons, 1989.

4. F.B.Hilderbrand, Introduction to Numerical Analysis, Dover Publication.

M.A./M.Sc. II (SEMESTER-III), PAPER-I

FUNCTIONAL ANALYSIS

		INCTIONAL ANALYSI		
Co	ourse Code: B030901T	Credit-5	Core Paper	•
		Max. Marks: 25+75		
Total N	o. of Lectures-Tutorials (in	Course Title: Functiona	al Analysis	
ho	ours per week): 4+1=5			
Course ou	tcomes:			
CO1: The	e students will be able to analyse	e Normed linear space, Ba	nach space.	
CO2: The	e students will be able to analys	e l_P^n , $l_p l_2$ and l_∞ Banach	spaces, Banach space C	(X), Riesz
– Fisher t	heorem, Continous and Bound	ed linear Transformation.		
CO3: Th	e students will be able to a	nalyse Isometric Isomar	ohism, Topological Isc	omarphism,
Equivaler	nt norm, Riesz- Lemma, Conv	vexity, Hahn- Banach Th	neorem, Open mapping	Theorem,
Closed G	raph Theorem.	-		
CO4: The	e students will be able to analyse	e Hilbert space, Riesz repr	esentation theorem.	
Unit		Topics		No. of
		-		Lectures
I	Normed linear space, Banach continuity and joint continuity		Normed linear space,	15
Π	l_P^n , l_{p,l_2} and l_{∞} Banach spaces Quotient spaces of Banach Transformation.			15
III	Isometric Isomarphism, Topo Lemma, Convexity, Hahn- Ba Graph Theorem.			20
IV	Hilbert space, The adjoint of Normal and Unitary operators	1	1 0	25
Suggeste	d Readings:			
 Lustern E.C. Tit 	Rudin : Functional Analysis - TA ik and sobolev : Elements of Func- chmarsh : A Theory of Functions arma & A.R.Vasishtha : Functiona	ctional Analysis - Hindustar - Oxford University Press	n Publishing corporation N New Delhi	lew Delhi

M.A./M.Sc. II (SEMESTER-III), PAPER-II INTEGRAL EQUATIONS

C	Course Code:B030902T	Credit-4	Core paper	r
		Max. Marks: 25+75		
Total No.	of Lectures-Tutorials (in hours	Course Title: IN	TEGRAL EQUATION	NS
	per week): 4			
Course ou	tcomes:			
	rstand the methods to reduce Initi	al value problems associate	d with linear differential	equations to
	egral equations.			
-	ories and solve different integral e	, ,	•	
	tudents will be able to analyze Fre	-		
	approximations, Neumann series	•		
CO4 The s	tudents will be able to analyze and	l solve the solution of integ	ral equations by transfor	m methods
Unit		Topics		No. of
		-		Lectures
Ι	Integral Equations: Definition	and classification of line	ar integral equations.	20
	Conversion of initial and bou	undary value problems in	to integral equations.	
	Conversion of integral equations	s into differential equations.		
II	Fredholm Integral Equations:	Solution of integral equ	ations with separable	
	kernels, Eigen values and	•	•	20
	approximations, Neumann ser		•	
	equations with symmetric kerne			
III	Volterra Integral Equations: S	•••	Neumann series and	
	resolvent kernel. Equations with	convolution type kernels.		20
IV	Solution of integral equation	ns by transform method	ls: Singular integral	15
	equations, Hilbert transform and	d solutions by Laplace transf	ormation.	
Suggested	Readings:			
1. Kanwal,	R.P.: Linear Integral Equation. The	eory and Techniques. Acader	nic Press, 2014.	
2. Raisingh	nania M. D.: Integral Equation & Bo	oundary Value Problem. S. C	hand Publishing, 2007.	
-			-	

3. Jerri, A. :Introduction to Integral Equations with Applications, John Wiley & Sons, 1999.

4. Hildebrand, F. B.: Method of Applied Mathematics, Courier Corporation, 2012.

5. Wazwaz, A. M.: A First Course in Integral Equations. World Scientific Publishing Co Inc, 1997.

M.A./M.Sc. II (SEMESTER-III) PAPER-III

MACHINE LEARNING

Course Cod	le: B030903T	Credits-4 Marks: 25+75	Core paper	
Total No. o	f Lectures (in hours per week) – 4	Course Title: N	MACHINE LEARNING	7
CO2: The st models gene CO3: The st CO4: The s	comes: cudents will be able to understand the cudents will be able to understand a rated from data. udents will be able to understand the cudents will be able to identify ap d apply these algorithms to solve the	wide variety of learning al e latest trends in machine learning propriate machine learning	gorithms and know how earning.	to evaluate
Unit		Topics		No. of Lectures
Ι	Introduction to Machine Learning Machine Learning, Learning, Typ Approaches Understanding of D and Machine Learning, Dataset Imbalanced data, Outliers, Data S	bes of Learning, Introduction ata and Datasets, Preparation cleaning Train, Test and	on to Machine Learning on of Data for Analysis d Validation Datasets,	20
II	SUPERVISED LEARNING (R Cost Function, Multiple Linear R Overfitting and Underfitting, Co Precision, Recall	egressions, Logistic Regre	ssion. Decision Trees,	20
III	Unsupervised Learning: k-Neare for classification, Logistic Regree Advanced Machine Learning M over and under fitting.	ssion		20
IV	Statistical Inference and Bayes Introduction to Bayesian Methor Model comparison, Maximum L	ds: Estimation, Likelihood		15
 Ston Srini Meh 	eadings: n A. L., Bailer, Jones, Practical Bayesia e, James V., Bayes Rule: A tutorial intr vasaraghavan, A. and Joseph, V: Mach ryar Mohri, Afshin Rostamizadeh, Ame	oduction, Sebtel Press ine Learning, Wiley India Pvt eet Talwalkar: Foundations of	Ltd. 2019	ress, 2012.

5. Siman Haykin: Neural Netowrks, Pearson Education.

M.A./M.Sc. II (SEMESTER-III) PAPER-III GENERAL RELATIVITY

Cours	e Code: B030904T	Max. Marks: 25+75	Fifth Elective	paper
Tota	al No. of Lectures (in hours per week) – 4	Course Title: GENERAL REI	ATIVITY	
Cours	e outcomes:			
CO2: space	The students will be able to le time. The students will be able to und	erstand metric tensor and Rieman earn Ricci tensor, Bianchi Iden lerstand Einstein's field equation	tities, examples of s	
Unit		Topics		No. of Lectures
Ι	Contraction, Quotient law, Met	transformation law of tensor, Protection tensor and Riemannian space- Civita tensor, Christoffel symbol,	e, Conjugate tensor,	15
II		ence and curls, Parallel transport, R titles, Geodesic, Null geodesic, Geo		20
III	covariance, Mach's Principle, get approximation of equation of more	vity, Principle of Equivalence, F odesic postulate, Energy momentur tion, Search for Einstein's field equ equations, deviation of Einstien's	m tensor, Newtonian ation, Einstein's field	20
IV	Schwarzschild line element, Iso	pace, Schwarzschild exterior solut otropic form of Schwarzschild ex sts in General relativity, Birkhoff's t	sterior line element,	20
Sugge	sted readings:			
2. Jam 3. S Di 4. S. P 5. I.B.	es Hartle: Gravity, Pearson Educati hurandhar and Sanjit Mitra: Genera ?. Puri: General Theory of Relativity	l Relativity and Gravitational Wave y; Pearson, 2013. pringer Science& Business media, 2	s, Springer 2022	

M.A./M.Sc. II (SEMESTER-III) PAPER-III FINSLER GEOMETRY

Course	e Code: B030905T	Max. Marks: 25+75	Fifth Elective	paper
Tota	ll No. of Lectures (in hours per week) – 4	Course Title: Finsler Space		
Course	e outcomes:			
CO1:	The students will be able to ana	alyse Finsler space and homogen	eity properties of g	_{ij} and C _{ijk} ,
Geode	esics.			
CO2 :	The students will be able to a	analyse Fundamental postulates	of Cartan, Cartan	covariant
of Ber	wald's and it's properties, Relation	riant derivatives, Berwald's conr on between connection coefficien ind Commutation formulae, Th	ts of Cartan and Ber	rwald.
		ature tensors and Bianchi identiti		
	•	alyse Curvature tensor of Berw		tives in a
Finsle	r space and Motion in a Finsler s	pace.		
Unit		Topics		No. of Lectures
Ι	Curve line element, Fundamen	tal function, Finsler metric, Fins	ler space, Tengent	20
	space, Indicatrix, Minkowskia	an space, magnitude of a vec	ctor, homogeneity	
	properties of g_{ij} and C_{ijk} , Geode	sics.		
Π	Cartan covariant derivatives,	artan, Cartan covariant derivati Berwald's connection, Covaria Relation between connection coe	ant derivatives of	20
III	Commutation formulae, The th	ree Curvature tensors of Cartan,	Identities satisfied	20
	by the Curvature tensors, Bianc	hi identities.		
IV	Curvature tensor of Berwald, 7 Finsler space.	The Lie-derivatives in a Finsler s	space, Motion in a	15
Sugges	sted readings:			
1.Hanr	no Rund: The Differential Geometry	of Finsler spaces —Springer public	cation	
2 . Mats	sumoto: Foundations of Finsler Geo	metry and special Finsler spaces-	Kaiseisha press	

M.A./M.Sc. II (SEMESTER-III), PAPER-IV

Advanced Discrete Mathematics

Course C	ode: B030906T	Credit-5	Fifth Elective pa	per
		Max. Marks: 25+75	• ·	-
	Total No. of Lectures-Tutorials (in hours per week): 4+1=5Course Title: Advanced Discrete Mathema		tics	
Course ou	itcomes:			
CO1: Unde	erstand the basics of combinatoric	s, and be able to apply the m	nethods from these subjec	ts in
problem s	-			
	ble to use effectively algebraic tec		-	
•	rovide a formal connection betwee			-
	and develop them into a mathematic	atical (abstract) view toward	s algorithmic design and ir	n general
computati	ion itself.			
Unit		Topics		No. of
				Lectures
I	Basic counting principles, Peri repetitions), Binomial theorem, partitions, Stirling numbers Principle of Inclusion and Exclusio	Multinomial theorem, C	Counting subsets, Set-	15
11				
	Definition, examples and basic properties of graphs, pseudo graphs, complete graphs, bi-partite graphs, isomorphism of graphs, paths and circuits, Eulerian circuits, 20			
	Hamiltonian cycles, the adjace			20
	problem, shortest path, Dijkstra's		_	
III	Generating functions: Algebra o			
	Colordation concertions from the angle of the concertion from the second			20
	Recurrence relations: Recurrence relation models, Divide and conquer relations,			
	Solution ofrecurrence relations, S			
IV	Languages : Alphabets, strin Concatenation, KleeneStar	ng, language, Basic Ope	erations on language,	20
	Finite Automata and Regular Lar			
	Regular Expressions, Transition	•		
	automata, NFA to DFA Convers		•	
	finite automata, Pumping lemma	and closure properties of re	egular languages.	
Suggested	l Readings:			
	: Elements of discrete mathematics, Ta		8.	
	ou: Disrete Mathematics, Pearson Edit	-	University Press 2001	
	Lint and R.M. Wilson, A Course in Com e, Combinatorial Techniques, Hindusta	-	University Press, 2001	
5. J. E. Hop	croft, R. Motwani and J. D. Ullman, <i>Ini</i> /esley, 2001.		. Languages, and Computatio	<i>n,</i> 2nd Ed.,
	An Introduction to Formal Language ar			

.

÷

M.A./M.Sc. II (SEMESTER-III), PAPER- VI

Introduction to SCILAB /MATLAB

Course Code: B030907P	Credit-5	Sixth Elective paper	
	Max. Marks: 50 + 50		
Total No. of Lectures-Practicals (in hours	Course Title: Introduction to SCILAB /MATLAB		
per week): 2+6			
Course outcomes:			
CO1: The students will be able to use SciLab/I	MATLAB in their mathemati	cal problem solving.	
CO2: The students will be able to use these s	oftware in working problem	ns related to polynomials and Linear	
Algebra			
Introduction to SciLab/ MATLAB, Installation	of SciLab/ MATLAB, Basic el	ements of the language, Looping	
and Branching: If, select, for, break, continue,	Functions, return, Contour	plots, tiles, axes, legends.	
Matrices: Creating matrices, sum, product of	matrices, inverse, rank dete	rminant, comparing matrices,	
system of equations, working with polynomia	als, defining a function and	output arguments.	
Practicals:			
1. To print the prime numbers be	tween 1 and 100.		
2. Write a program to add, subtra			
3. To find the average of between		-	
4. Write a program to check a nu		?	
5. Write a program to display tab			
6. To find the roots of a cubic eq		1.1 1	
7. To sum and difference of any		nd the row sum and	
column sum of a given matrix 8. To find inverse of a given 3x3			
9. Write a program to find the tra		f a matrix	
10. To sort all the elements of a 4	1 /		
11. Program to accept a matrix ar		a symmetric matrix	
skew-symmetric or not.			
12. Write a program to print Fibor	nacci numbers.		
Suggested Readings:			
1. Gilat, A. : MATLAB: An Introduction with Ap	oplications, Wiley, 2012		
2.Pratap, R : Getting Started with MATLAB, O	xford Univ Press, 2019		
3. Nagar, S. : Introduction to Scilab, Apress, 2	017		

_

MA./M.Sc. II (SEMESTER-III), PAPER- VI

Introduction to LaTex

Course Code: B030908P	Credit-5	Sixth Elective paper		
	Max. Marks: 50+50			
Total No. of Lectures-Practicals (in hours	No. of Lectures-Practicals (in hours Course Title: Introduction to LaTex			
per week): 2+6				
Course outcomes:				
CO1: The students will be able to know that	how the concepts have bee	n developed in Mathematics		
CO2: The students will be able to different t	typesetting Mathematical fo	rmulae and equations.		
CO3: The students will be able to typeset in	different formats including	research paper, report and thesis		
	Topics			
Introduction to LaTeX, Installation of LaTeX,	Layout Design, LaTeX input	files, Input file structure.		
Document classes, packages, environments,	page styles, Typesetting tex	ts, Fancy Header, tables,		
Inline math formulas and displayed equation	ns, Math symbols and fonts,	delimiters, matrices, arrays,		
Typesetting Mathematical formulae: fraction	ns, Integrals, sums, products	s, etc.		
Producing Mathematical Graphics.				
Document classes for paper writing, thesis,	books, etc. Table of contents	s, index, bibliography management.		
Hypertext, pdf pages, geometry, fancy head	er and footer, Verbatim, iter	mize, enumerate, boxes, equation		
number.				
Practicals:				
Practicals based on above .				
Suggested Readings:				
1.Kortwitz: Latex A beginner guide, Packt Publishing Ltd, 2021				
2. Karmali: A Short Introduction to Latex, Greatespace Independent Pub Plateform, 2019				
3. Lamport: Latex: A Document Preparation	3. Lamport: Latex: A Document Preparation System, Addison Wisley,1994			
4. Swapan Kumar: Latex A beginner guide, Lakxmi Pub Pvt Ltd, 2019				

-

M.A./M.Sc. II (SEMESTER-IV), PAPER-I Advanced operation research

Course	Code: B031001T	Credit-4	Core paper		
Course	Couc. D0510011	Max. Marks: 25+75			
Total	No. of Lectures-Tutorials (in	Course Title: Advanced Operation Research			
1014	hours per week): 4				
Course o	putcomes:				
CO1: St	udent will be able to define Invent	tory theory and Models.			
CO2: St	udent will be able to define Queni	ng theory and its character	ristics, stochastic Process	es under	
steady a	nd transient states. Study of M/M	I/1 and M/M/s quening mo	odels and Parametric Line	ear	
Program	iming				
	udent will be able to analyse Netw				
	udent will be able to define Game	-		-	
	of 2×2 game without saddle point	-			
CO5: St	udent will be able to solve Integer	Programming problem an	d Branch and Bound tech	nnique.	
Unit		Topics		No. of	
				Lectures	
Ι	•	Game theory, Zero- Sum Game, Solution of rectangular game with saddle point, 20			
	Solution of 2×2 game without saddle point. Graphical method of solution for 2×n				
	and m×2 games. Integer Programming, Branch and Bound technique.				
II	Network analysis, CPM and PERT, Network components and general procedure 20				
	forconstruction of networks and numbering of events (Fulkerson's rule) . CPM				
	computation and determination of critical path.				
III	Inventory theory, economic of	order Quantity Models u	inder various demands	20	
	having shortages and no shorta	ges, Probabilistic Invento	ry models with discrete		
	or continuous demand. Sim	pple replacement model for Equipments that			
	deteriorates with time in descret	teand continuous form.			
IV	Quening theory and its characteristic		acces under steady and		
		·	5	15	
	transient states. Study of M/M/	1 and M/M/s quening mo	dels, Parametric Linear	15	
	Programming.				
Suggeste	ed Readings:				
1. Opera	tions Research – kantiswarup, P.K.g	upta, Man Mohan–Sultan Cl	hand & sons, New Delhi		
2. Operat	2. Operations Research (An Introduction) – Hamdy A. Taha – Pearson				
3. Opera	3. Operations Research– R.K.Gupta–Krishna Prakasan				
·	4. Operations Research –K.Nagrajan - New Age International Publications				
L	. Operations Research – K. Nagrajan - New Age International Publications				

M.A./M.Sc. II (SEMESTER-IV), PAPER-II FLUID DYNAMICS

Cours	e Code: B031002T	Credit-4 Max. Marks: 25+75	Core paper	ſ
Tota	ll No. of Lectures-Tutorials (in hours per week): 4	Course Title: FLU	JID DYNAMICS	
Cours	e outcomes:			
CO1:	The Students will be able to identia	fy the fundamental concepts of F	Fluid dynamics and th	eir role in
mode	rn mathematics and applied cont	exts.		
CO2:	The Students will be able to apply	y the Fluid dynamics concepts to	o diverse situations in	n physics,
engin	eering, and other mathematical c	contexts.		
Unit		Topics		No. of Lectures
Ι	Lagrangian and Eulerian method	ls to describe the fluid motion, Ed	quation of continuity,	20
	Boundary conditions, Stream Lines. Pathlines and streak lines, Velocity potential.			
	Irrotational and rotational motions	s.		
II	Euler's equations of motion, Pressure equation, Bernoulli's theorem, Impulsive actions,			
	Flow and circulation, The permanence of irrotational motion. Stream function. Irrotational 20			20
	motion in two dimensions. Complex velocity potential. Sources, sinks, doublets, and their			
	images.			
III		motion is produced by the motion of	•	
	-	energy of liquid, Milne-Thomson	circle theorem. The	20
IV	theorem of Blasius, Stoke's stream	n runction. ind, equation of motion of a gas, su	ania conia super	15
11	sonic flow of a gas, isentropic of a		osonic, sonic, super-	13
		a gas, shock formation		<u> </u>
Sugge	sted Readings:			
		uid Dynamics, C.B.S. Publishers, D		
	2 W.H. Besaint and A.S. Ramso Delhi,1988.	ey: A Treatise on Hydrodynamics, I	Part II, C.B.S. Publisher	rs,
	3 B.G.Verma: Hydrodynamics,	, Pragati Prakashan, Meerut, 1995.		
	4 M.D. Raisinghania: Fluid Dy	namics, S.Chand and Co, 2003		

M.A./M.Sc. II (SEMESTER-IV), PAPER-III

		Special Functions		
Course Code: B031003T		Credit-5	Seventh Elective p	oaper
		Max. Marks: 25+75		
	Total No. of Lectures-Tutorials (in Course Title: Special Functions			
	ours per week): 4+1=5			
Course ou				
	dent will be able to define Fund			Differential
•	Series solution to Legendre, Besse	· · ·		
	dent will be able to define Her	•		Rodrigue's
	Recurrence relations, Orthogonal P		mials.	
	dent will be able to define Lagurr	•		
CO4: Stu	dent will be able to define Hyper	geometric Functions and Ser	ies Solution.	
Unit		Topics		No. of
				Lectures
I	Singularities:			15
	Fundamental System of Integr	als, Singularity of a Linea	r Differential Equation.	
	Solution in the neighbourhood	e 1. e		
	Legendre, Bessel differential equ	ations by Frobenius method		
П	Hermite Polynomial:			
	Hermite equation and its so		· · · · · · · · · · · · · · · · · · ·	20
	Recurrence relations, Orthogona	I Properties of Hermite Poly	nomials	
111	Lagurre polynomial:	_		
	Lagurre equation and its solu		, Recurrence relations,	20
	Orthogonal Properties of Hermit	e Polynomials.		
IV	Hypergeometric Function:			20
	Hypergeometric Functions, Series S Confluent Hypergeometric functior			
	Differentiation of Hypergeometric F		Typergeometric Tunction,	
Suggested	Readings:			
1. Simmor	ns, G.F., Differential Equations, Tat	a McGraw Hill.		
2. Agarwa	l, Ravi P. and O' Regan D., An Intro	duction to Ordinary Differer	ntial Equations, Springer, 2	.000

3. Codington, E.A and Levinson, N., Theory of Ordinary Differential Equation, McGraw Hill.

M.A./M.Sc. II (SEMESTER-IV), PAPER-III DIFFERENTIAL GEOMETRY OF MANIFOLDS

Course Co	ode: B031004T	Credit-5 Max. Marks: 25+75	Seventh Elec	ctive paper	
	of Lectures-Tutorials (in week): 4+1=5	Course Title: Differential Geometry of Manif		olds	
Course ou	tcomes:				
CO1: Stu	dents will be able to explain the	e concept of a manifold and give	examples.		
	dents will be able to define Cor				
	dents will be able to define Lie				
	•	emannian manifold, Riemannian			
		vature, Bianchi identities, consta		tinition of	
		ian manifold, Projective curvatur	re tensor.		
Unit		Topics		No. of Lectures	
Ι	Definition and examples of c	Definition and examples of differentiable manifold, differentiable function, 20			
	Tangent space, vector field.				
II	Connections, Affine connection and Covariant derivative, torsion and 20				
	curvature tensors, difference tensor of two connections.				
III	Lie – bracket, Lie – derivative, exterior product of two vectors, Exterior				
	algebra, Exterior derivative.				
IV	Definition of Riemannian ma	anifold and examples, Riemanni	an connection,	15	
	Riemannian curvature tenso	or and Ricci tensor, scalar curv	ature, Bianchi		
	identities, constant curvature	identities, constant curvature, definition of Einstein manifold, Geodesic in			
	Riemannian manifold, Projec	ctive curvature tensor.			
00	sested Readings:				
1	Quddus Khan : Differential Ge	ometry of manifolds — PHI Publ	ications		
2	H. S. Shukla & B. N. Prasad: Di	fferential Geometry of manifold	s — Vandana Pr	akashan.	

M.A./M.Sc. II (SEMESTER-IV), PAPER-III

Advanced Numerical Methods

C	Course Code: B031005T	Credit-5	Seventh Elective l	Paper	
		Max. Marks: 25+75			
	No. of Lectures-Tutorials (in Course Title: Advanced Numerical Methods			ods	
	nours per week): 4+1=5				
Course of		a of Lincor Algobraic Faust	tions andinany differentia	1	
	Ident will be able to solve System	n of Linear Algebraic Equal	tions, ordinary differentia	il equations,	
	al differential equations. e students will be able to underst	and and apply various iterat	tive techniques for solvin	a system of	
	equations.	and and apply various neral	ive techniques for solving	g system of	
	e students will be able to analyze the	he consistency and converger	nce of a given numerical so	cheme.	
	e students will be able to explain	•	e		
PDEs (hy	perbolic, parabolic and elliptic) and	d the reasons behind these ch	noices.		
	e students will be able to demonstr		cs of finite difference met	hods for the	
numerical	solution of partial differential equ	ations.			
Unit		Topics		No. of	
				Lectures	
Ι	Numerical Solution of System	-		20	
	with Partial and Complete Piv	5			
	methods: Jacobi method, Gauss-Seidel method and Gauss Jacobi method and their				
	convergence, diagonal dominance, Successive-Over Relaxation (SOR) method, Ill- conditioned matrix.				
II	Numerical Solution of ordinary	Differential equations: Nu	merical solution of ODF		
	by Picard's, Euler's and Runge	-		20	
	difference method, Shooting me			20	
III	Numerical Solution of Partial D		fication of second order		
	general PDE, Difference metho	-		20	
	conduction equation and its nun	nerical solutions with finite c	lifference methods (Two	20	
	and three level difference method	ods).			
IV	Difference methods for Hyperbo	olic PDE. Wave equation and	d its numerical solutions	15	
	with finite difference methods	(First order only). Difference	e methods for Elliptical		
	PDE. Dirichlet problem for Lapla	ace equation and its numer	ical solutions with finite		
	difference methods.				
Suggested	Readings:				
1. M. K. Jai	n, S. R. K. Iyengar – R. K. Jain, Numerio	cal Methods for Scientific and E	ngineering Computation, Ne	w Age	
International, 6th Edition 2012.					
2. S.D. Conte and C. DeBoor, Elementary Numerical Analysis: An Algorithmic Approach, McGraw Hill, N.Y., 1980.					
	ald and P. O. Wheatly – Applied Nume				
	4.A. Ralston and P. Rabinowitz – A First Course in Numerical Analysis, 2nd Edition, McGraw - Hill, New York, 1978				

.

McGraw - Hill, New York, 1978

.

5. K.E. Atkinson, An Introduction to Numerical Analysis, John Wiley and Sons, 1989.

6. F.B.Hilderbrand, Introduction to Numerical Analysis, Dover Publication.

7. W.F. Ames, Numerical Methods for PDEs, Academic Press, N.Y., 1977.